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INTERACTION BETWEEN WATER BORNE WAVES AND SEISMIC WAVES IN THE OCEAN

BOTTOM: THE FORWARD- AND INVERSE PROBLEM.

ABSTRACT

The work is divided into two main parts. The first part, the
forward problem, is aimed at establishing a theoretical
framework for excitation and propagation of elastic waves in
linear homogeneous isotropic media.

Thp second part, the inverse problem , is aimed at determining
the environmental parameters which significantly influence
acoustic propagation in a shallow water environment.

The methods developed here indicate that, under favorable
conditions, it is possible to infere ocean bottom parameters
such as P- and S- wave phase velocities from near surface
measurements.

I INTROOUCTION

The work reported here is a partial fulfillment of the requirements

for the degree Dr Ing under the supervision of professor Jens Hovem at

the University ot Trondheim, the Norwegian Institute of Technology.

The work is divided into two main parts. The first part, the forward

problem, is aimed at establishing a theoretical framework for

excitation and propagation of elastic waves in linear homogeneous

isotropic media. As the solution is limited to horizontally stratified

media, a separable solution of the equation of motion is derived.

In the outset, a numerical solution was implemented based on the

Thomson-Maskel matrix method[3,4] as derived by Kutschale(7]. This

approach was late- abandonded and a two-dimensional model - developed

at the SACLANT ASW Research centre at LaSpezia, Italy by Henrik

Schmidt (9] - was modified to the present three-dimensional version.
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The second part, the inverse problem , is aimed at determining the

environmental parameters that significantly influence acoustic

propagation in a shallow water environment. This is done by

interpreting shot data gathered by a seismic survey. Interpretation is

sought verified by comparison with output from the numerical model. To

my knowledge, the inverse problem methods utilized here have not been

published earlier.
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Z THE FORWARD PROBLEM

2.1 Introduction

It is well known that separable solutions ad to the use of integral

transform techniques which yield an exact solution to the wave

equation in stratified elastic media(1). The field parameters are,

however, determined by linear combinations of the basis for the

solution space i e inverse transform integrals. In cases with only a

few layers, contour integration can be used to reduce the numerical

computation, involving only a few integrations over finite intervals,

e g D1]. In general numerical models, however, such techniques are

inconvenient, and direct numerical integration has to be used.

In underwater acoustics in general, and also for the cases we will

investigate here, the sources are usually contained within a volume

small compared to the volume of interest, thus the radiated field is

most conveniently described in a cylindrical coordinate system. The

field is then given by Hankel transform integrpls which are not well

suited for direct numerical integration due to the Bessel functions

involved. In order to overcome this problem, Marsh[2] in 1961

introduced what was later called the fast field approximation (FFP =

Fast Field Program) of the Hankel transform. The field is separated

into ingoing and outgoing parts by expressing the Bessel function in

terms of Hankel functions, the ingoing part is disregarded and the

outgoing part is replaced by its large argument approximations. The

integrals are then evaluated by means of the fast Fourier transform

(FFT). As shown later by DiNapoli and Oeavenport[5], for the

two-dimensional case, the fast field approximation gives no

significant errors at ranges longer than a few wavelengths from the

axis.

After the introduction of the fast field technique, a number of

numerical models have been developed, based on this integration method

and thus usually called fast field programs.
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In spite of their common name, these models are significantly

different, especially concerning the approach taken to solve the

transformed wave equations in a multilayered environment.

Traditionally, the depth dependence of the field has been determined

by means of the Thomson-Haskell matrix method[3,4] . The first model

was introduced by DiNapoli[6, who evaluated the solution very

efficiently by means of recurrence relations for the hypergeometric

functions. However this approach allows only for fluid layers, and in

that case, other techniques, like normal mode methods, are usually

more convenient. The first FFP model, including the coupling between

compressional and vertical shear waves at the boundaries of solid

layers, was developed by Kutschale[7] also using the Thomson-Haskell

method. The original model allowed for only one source/receiver

combination for each solution. It has later been modified by

Harrison[8] to allow for several receivers, but even for one

combination the computations are rather extensive.

A more direct and computationally more efficient solution technique

was recently introduced by Schmidt[9]. The field parameters at the

interfaces are expressed in terms of source contributions and unknown

scalar potentials. The boundary conditions yield a system of equations

in the Hankel transforms of the potentials to be satisfied at each

interface. These local systems of equations are mapped into a global

set of equations using a technique similar to the one used in finite

element programs. The computational speed has been improved by an

order of magnitude by use of this solution technique. Furthermore

configurations involving several sources and/or receivers can be

treated with one solution, thus yielding the possibility of computing

total fields generated not only by single point sources, but also by

vertical source arrays.

These and similar models have all been two-dimensional, thus

restricting the sources to be placed on the axis of the cylindrical

coordinate system. A direct solution of problems with horizontally

distributed sources has therefore not been possible, but has required

a new calculation for each source and subsequent superposition. In

this paper the model of Schmidt[9] has been modified and extended to

allow for sources displaced with respect to the axis.
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rhe field parameters are expanded in a Fourier series in the angular

direction, thus leading to an infinite number of two-dimensional

problems. By expressing the boundary conditions in terms of Cartesian

components, rather than polar components, the coefficient matrix will

be independent of the Fourier order, and the Hankel transforms of all

the expansion coefficients for the unknown potentials can be found

with only one matrix inversion for each horizontal wavenumber. The

truncation point of the Fourier series can be determined a priori.

The inversion of the Hankel transforms is again performed by means of

the fast field technique, and the angular distribution is evaluated

from the expansion coefficients by means of an FFT technique.

In the following the model and its mathematical background will be

described.



2.Z List of symbols

W angular frequency

X Lame' constant and wavelength

p Lame' constant

Q density

C Conesiona wave phase velocity
c

c s  shear wave phase velocity

0 compressional wave potential

shear wave potential

A shear wave potential

shear wave potential vector

U particle displacement vector

u particle displacement in i-direction
1

V particle displacement velocity vector

v particle displacement velocity in i-direction

T stress in direction i applied to surface with normal
ik

vector K

S strain in direction i of surface with normal vector k

c klm stiffness constants

6 Kronecker delta

U(Oe Dirac delta "function"

I (z) 8essel function of first kind, order I1

N (z) Neumann function of order I

(2)Fzt Hankel function of second kind, order I

K horizontal wave number

vertical wave number For compressional waves
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p

vertical wavenumber for shear waves

- tilde: denotes source terms

F
m  

vector of parameters entering boundary conditions in
n

layer n for angular order m

m
B vector of up- and downward- going potentials in layer
n

n for angular order m

A matrix relating B
m 

to F
m 

in layer n, i:l: lower
nI n n

i=u: upper

R
m  

source contributions in layer n, agular order m
n
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2.3 The homogeneous solution

The solution will be restricted to a homogeneous medium, hence the

environmental parameters are independent of spatial position.

Newtons second law of motion for a solid may be stated in a frame of

Cartesian coordinates using tensor notation as

aT. (Xx ,x ) a U,(x x x
2

yk x V z I X VZ
ax k a at 2

The subscripts take on values from I to 3 indicating directions x,y

and z respectively. Einstein's summation convention i e summation

over identical indexes is assumed.

T ik is the stress tensor: stress in direction i applied to surface

with normal-vector k.

u Is particle displacement in i-direction.

The spatial arguments of T and u will in the following be omitted, but

assumed tacitly.

g is the density of the medium.

(1) thus equates the force in direction i applied to an infinitisimal

volume element to its inertia in direction i.

As the only forces acting on the volume element are the internal

volume forces, the volume is considered source-free.

The medium described by (1) is furthermore lossless. Viscous losses

can be included by entering a first order time derivative term. A

discussion on the causality of timedependent solutions when entering

losses is given in [17J.
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The linear elastic material properties for a general solid may be

stated as

Tik C iklm Sm 2

which is Hooke's law. The deformation is

1 auM

lm = 2 a. x xl (3)

We have the following symmetry relations

Tik T ki (a)
S1  S4b)S Im Sml 4b

C iklm Ckilm : ikml c lmik (4c)

(4a) follows as a consequence of the torsional moment vanishing at

equilibrium [16). (4b) is an obvious consequence of (3). The three

first terms of (4c) are consequences of (4a) and (4b) respectively,

while the fourth term follows from thermodynamical considerations

Thus, Ciklm has at most 21 independent components.

For ciklm to be isotropic, it is required that (14]

C iklm \ ik 6Im iP6il 6km iV61m 6kl (5)

(4a)implies that upv since Ciklm 1 Ckilm

The constitutive relation for an isotropic solid is thus simplified to

be

au I au uk
I 8x + lx + 

]
(6)

T k 6ik A6x 1x +ix

which rewritten in V-operator notation is

ik 6 Lk A V9U + 2 M Sik (7)

ik i
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The first two symmetry properties given in (4) state that both Tik and

Sik are symmetric. If they furthermore are real, they may be written

as real symmetric matrixes which consequently are selfadjoint.

Diagonalization gives the stress and strain respectively along what is

termed the principal axes. Then [151

T A VU 2p ()n n

This form is valuable for giving insght into the physical

interpretation of the Lame' constants. For a fluid where pzO. X

becomes the bulk modulus. For a solid, the effect due to the principal

stress T would be a dillitation pluss an extension in the n-direction
n

It should be noted that the material constants which normally enter

into our equations are the adiabatic terms as we assume that

negligible heat is transfered to the medium.

In order to combine equations (1) and (6), (6) is differentiated with

respect to xk and the common term eliminated. The result, rewritten in

V-operator notation, becomes

2-
4 2- aU

(N+W) V.U - WJV U - (9)t

Use of the vector identity
4 24

VxVxA = VV.A - V A (10)

enables us to bring (9) to a commonly used form termed the equ~tion of

motion for a solid isotropic homogenous lossless medium containing no

sources

2 .
2

c VV.U - c VxVxU - 0
c s at 2

where the phase velocities for compressional- and shear waves are

2 A2
c = (12a)
c Q
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c 12b)
s Q

respectively.

The introduction of the wave velocities at this stage is an

anticipation of things to come. It will be shown that these quantities

are phase velocities and, indeed, phase velocities related to

compressional- and shear-waves respectively.

Separating the solution of (11) into a space- and a time-dependent

part, will imply a timedependent part of the form exp(-)wt) of which

exp(jwt) is chosen. The symbol U, up to now used to denote the time-

and space-dependent particle movement, will in the followxng, unless

otherwise stated, be taken to mean ]ust the space-dependent part. This

should not cause confusion. (11) is thus reduced to

2 2 2
CVV.U - c 7VxU + W U * 0 (13)c s

A common approach for further reduction of (13) [12](13] is to express

the solution as the sum of a longitudinal- and a transversal term i e

U =U T*U L114)

where

V'U * 0
15a)-

VxU L 0 (15b)

Insertion of (14), (15a) and (15b) into (13) yields

2 4 2 4 24 +
c VV"U - c VxVxU T  w U = (10)

We define
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4' = V L  (17a)

Q xU T f 1 7b)

which inserted into (16) yields

2 2C C
s

V.4 -A V . (18)

2 2
5) W

The vector quantity in the second term of (18) may be reduced to a

s,.alar by expressing the potential vector as

2
- Iva - VxAa (19)
C

s

where a is a unit vector. It is common practice in z-dependent media,

[3]t4](7] to choose a to be aligned with the z-ax×.s. The displacement

components arising from Y will not have components in the z-direction,

thus representing a transversal shear wave which does not enter into

the two-dimensional (range and depth) case.

The displacement may now be written

U v4 - VxM'Z - VxVxAz (20)

As (165 is a linear operator, here termed L, then

L(U ) VLxV4* -VX * VxVxAz) = 0 (21)

is equivalent with

L(V ) + L(Vx'z) + L(VxVxAz) = 0 (22)

As the left hand side of (20) is obviously a vectorfunction of the

three spatial directions, it may be decomposed into three linearly

independent scalar functions. So must also than be the case with the

right hand side of (20) as well, the three scalar functions *,If and A

are linearly independent. As each term of (22) is linearly

independent, they can at most be a constant. We will here in the

following restrict our attention to assuming this constant to be zero.

Thus. (22) is implied by
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L(Vxy;= 0 123a)

L(VxV xAz) = 0 (23c)

thus (16) is satisfied if

• 2V 2 2 (24a)
- c

VxI-c2 xVxT 2 F) = 0 (24b)
s

VxVx(-c 2 Vxx A + 2A) = 0 (24 )

s ,

The quantities within brackets of (24a) can at most be constant. As

sources at infinity are discarded, the radiation condition imposes

that 4-0 when 1'l 
, 
thus implying the bracketed term beeiq 0. (24b)

and (24cC are clearly fwllfilled if the bracketed terms are constant.

The same physical considerations as applied to (24a) are valid, thus

yielding that the bracketed terms vanish when II
-

Application of the vector identity (10) to the bracketed terms of

(24b) and (24c) bring these two equations to beeing of the Helmholz

type and in summarizing: if (20) is a solution of (13), then

7' 2 I h
2  

4 = 0 (25a)

V
2  

T + g
2  

Y = 0 (25b)

7
2  

A - g
2  

A = 0 (29,)

where h and , are the wavenumbers for compressional- and shear waves

respectively:

2
2 -

C

h = 2 X + 2w (26)

c
c

2 2

2 WQ WiC2
g 7 -
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It has been stated (11), without beeing shown, that it is the

compressional and shear wave velocities that enter into (9). A

separable solution of (25) in a Cartesian coordinate system is

O(xy,z) e-(kxx . k y * k z) (28)

where

2 2 2 2
h k k + k (29)x y z

As all directions are equivalent, propagation in the x-direction may

be considered with no loss of generality. Inclusion of the

timedependent factor yields

j(wt - k x)
*(t,x) e x (30)

For constant phase the argument of the exponential function is

constant, thus

x w__ si 2u 1/2
2i - = ( ) 1/c (31)
t k h g cx

Similarily, a solution of (25b) and (25c) will yield

x 1/2
- (1/ c (32)t kx Q

Application of (20) to (28) gives

* e(wt - kx(
U

=  
-jk e x (33a

* = " )kx ej3t - kxx) - 133b1
UA -kx e y (33b)

4 2 j(wt - k x) 4
U A k e x z(3c
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4 represents a wave propagating in x-direction with phase velocity c

and with particle displacement in the direction of propagation, while

' and A propagate in the same direction with phase velocity c but5

with particle displacements perpendicular to the propagation

direction.

If U n = fu rnUnu zn} are the displacement components referred to a

cylindrical coordinate system {r,eBz in a homogeneous layer n, (13)

will be satisfied for (20) expressed in cylindrical coordinates as

a. ia ap 
2

An n n(
Urn T * r a brz

1 a. ay iaA (35)
u n n n
8n r a8 Br r aeaZ

# 1 a a 1 a
2

n
u -)r - A (35)
zn az rBr r r 2 ) 2 n

where the potentials satisfy the homogeneous scalar wave equations

(25a). (25b) and (25c)

If a solution where there is no 6-dependance is examined, it is

readily seen that both u and u are dependent upon both 4 and A,r z

while u5 is dependent solely on T. Previous models [3][4] had separate

uncoupled solutions for these two cases. The two-dimensional

realization based on + and A could support compressional-, shear in r

and z plane- and surface-waves such as Rayleigh (vacuum-solid

interface) Scholte (liquid-solid interface) and Stoneley(solid-solid

interface). The one-dimensional realization was used to study

transversal shear waves (displacement in e-direction) and chiefly Love

waves. These are transversal shear waves confined to a waveguide

limited by two interfaces.

The attenuation in the medium can be accounted for by allowing the

Lame' constants and thus also the wavenumbers to Oe complex. This

follows from including viscous losses by addirg a first order

time-derivative term to (1). One must be aware when including losses

in this manner and performing integration over frequency to obtain a

time-dependent solution, the answer may come out non-causal. A
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discussion of this problem is found in [17]. This point will, however,

not be given more attention here.

In order not to confuse, the index n referring to the layer number

will be implied in the rest of this section.

A set of solutions of equations (25) of the separable form

*(r.B,z) R(r) 0(8) Z(z) (37)

is sought. This yields the seperated ordinary differential equations

'' - m 
2  

= 0 (38)

Z'' ( h
2  

- k 2) Z = 0 (39)

r2R 
'  

* rR' (k2 r - m2)R 0 (40)

with solutions

o (m8) cos(m8) (41a)

e 2(m ) sin(mO) (41b)

Z (kz) e-'1 ( Z (42a)

z2 (kz) e ('2b)

Rm l (kr) = 3m(kr) (43a)

R (kr) N (kr) (43b(

respectively. m is taken to be 0.1,2,... as the boundary conditions

are periodic in A. J () and N () are the Bessel- anci Neumann functionsm m

of order m respectively. The Neumann function solution (43b) will be

discarded as it has a singular point at the origin. This will be given

further d; ission under numerical integration.

The solution (37) becomes an angular expansion of the potential

functions
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*(r.8,z) : [ *mi, cos(m8) (44)
m~o sinimBl

A(r.8,z) = EAmrrI) cos (Mel f45)
mzOsin (m

41r z E rz s anmg) (45)
-cos (mal

where

m m -Lnk) in zclkl
*(rz) = 7lalk) ez .a(k) e Jk J(rk) dk (47)

D12 m

Am (rz) =f(b (WI e- *~k b m(k) ez
8
)WklI J (rk) dx (48)

1 2 i

Ym(r,zI z f~cm1k) e- *Ok cm(WI ez ]~)k J3 Irk) dk (49)
a1 2 m

2 2 1/2 2 2
(k h Il k > Refh I

a(s) - 2 2 1/2 2 2 (50)
fllh k W) k 4 ReiN 1

2 2 1/2 2 2
(k - g I kc > Reig I

jIaI2 k I
2
)1/2 k 

2 
4 eg2 (51)

The displacement components u z u rand u0  are expanded according to

u iIrOz) = umrz coalin) (521
r r SwnmS)

m:00

u Ir.8zI = umlr I) sinlmO) 53
8M-0 A -coasifll(53
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u (r,B,z) iu nr z) cos(m ) (54)
z m=O z sin(inG

If we derive the quantities ur and u8 by a direct application of the

operator defined by (34),(35) on (44),(45) and (47),(48), we would, as

we take into account

d 3 (sr) t si - (sr) . - 3 (sr) (55)
dr m m+ 1 r m

obtain results with different orders of the Bessel functions. It is.

from a numerical point of view, desirable to have just one Bessel

order in each equation.

If we form the linear combination of (34) and (35) with (52) and (53)

as sum and difference, we get

u r u =
r-n m8

m cos(mB) m sin}mB
{u u

r sin(me) - -cos(me)m=O

aL . . L) , L IF + + A
ar r ae + r r ae az 8r r 3e

a a - 4 im sin(mB): {( - - 9

-cos(me)
m=O ar r

( a m im cos(me)

* r - sin(mO)ar r

( aL m ) m sin(mB)az -cos~me)ar r (56)

when we use the notation defined in (441 - (19).

We observe that the partial differentiation operation oith respect to

8 applyed to the expressions for *, It and A: (44) - (49). leads to a

constant m (and of course alteration of the sine- and

cosine-functions), so that the partial differentiation operator

becomes equivalent to the operator defined by
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S(sr) sJ - tsr) (57)

dr r m m.1

Hence, we have only one Bessel order for the positive- and

negative-ILnear combinations respectively.

The trigonometric expansion given by (56) will of course be the same

for all layers, differing only by the expansion coefficients. It is

therefore sufficient to meet the boundary conditions in terms of the

expansion coefficients

mm

u )lr,z) t u-(r.z)
r

;mm ; a- , 9  m a M
ar r r r 3z r r

which, when is7)-(49)) is inserted becomes

m~r m -m -20)s) - m zols)
S r,z) u (r,z) JE[a (s) s e * a (s) s e

ur -ue 1 2

m -eZ(s))

1 2

" C S a-O s cm(.) s e sO s I S 3 (rs) ds (59)

The coresponding development of u zcomes considerably easier as we

observe that the part of the differential operator (36) which operates

2 2

- A -(g + 2) A (60)

o 2a aw w

so that we can write
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m a

in -i~as) s) z ~ s)

u . z) I [ a is) a(s) e-a2 s)Q S e a )

bm( s) se b(s) s eZO(S)Is I (rs) ds (61)
1b2 m

The following boundary conditions at the horizontal interfaces involve

the stress components T zzT and T z If these are expanded like

144), (45) and (46) respectively, use of Hooke's law leads to the

following expressions for the expansion coefficients

Ti 2m a in

T
m 

(r,z) = AVmrz) - 2w - u (r,z)zz 3

= ff[ami k) 12k
2 -9

2 ) e
--i 

(
k) . (2k 2 _ g2) a (k) e

z ( k )

- in(kl 2 k Pik) e
-z
i 

(
k) . bmi k) 2 k qik) e

z  (k )
I k I rk) dR (62)

-b k)2 m 3)k k (2

T
m  

(r z) Tm T rz)
rz z

a min in a - m mW( (Ur(r~z) + um(r.zl) (3r -1 r z r z)

in -iOk) zik)W7[E am(k)2ka(k)e-za k)2k,,(k1e
0- 1 20

- i 2 2 -z O k ) - i 2 _ 2 zlk )

.b1okeH2k- )e- * b (k)(2k -9 )e

-z Otk) i zB(k)
-,: ( 11kO(w)e * C (k kO k)e )k 2 (kr) dk (63)

It should be noted that the use of the linear combinations (59) and

(63) in the boundary conditions rather than the components has the

effect that all coefficients relating to the unknown arbitrary

functions (a ,a2, b I b , Cland c 2 ) will be independent of the Fourier

order m. This is obviously very important for the efficiency of the

numerical solution.
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For fluid layers only the potential 4(r.,z 
will be present, and 

the

expansion coefficients for the displacements are obtained directly

m m m and m to zero. The shear

from '51) and (59) by setting b 1 ,b 2 ,C 2

stresse; vanish identically, 
whereas (62) has to be replaced by

T
m 

kr,z) = XV24 m(r.z)
zz

2 - za(k) m za((k) . rlk(

-Xh T[am(kle - a (k)e k 3 (rk)dk 
(64)

a
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2.4 Source field

A simple compressional source placed at the point {r ,e. , z1 will

produce the following field in an infinite homogeneous medium, [Q]

(r,8.z)

S. . ... (k) Iz-z I
m E ) cos3m-r ) Ej (r k ) e ]kJ (rk) dk (65)

47rw m=O m i, a~k) mm=O 0

where S. is the source strength, which is generally complex to account

for the actual phase of the source. The factor cm  due to the

expansion of the exponential function in a Neumann series [9]. is

I, m=0
E (66)
m 2 m>0

If more than one source is present within a layer, the contributions

are simply added to yield

*(r,.,z) =

- - N -a(k)lz-z I .
E 7C 1 S cosm(O-9 )j (rik) e I k J (rk) dk

4irwm 0 0 iO1 1(k) m

(67)

where N is the number of sources. The potential *(r,8,z) is now

expanded like (44) and the coefficients are easily obtained as

*m(r,8,z)

- N cos(me ) -a(k)lz-z I
m 3 (r k) k 3 (rk) dk (68)

4lrW 0 1 sin(mB.) m i a(k) m

The expansion coefficients for the Cartesian displacements components

follow from ((52),(53.) and (54))
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um(r.) 
z

E - N cosimS.) a~kClz-z I
r f[ E s . sign(z-z.) 3 (rk) ze i JkJ (rk)dk

0 1:1 s in~m9 .C

(69)

umlr,z) : um(r,z) -
r a

E - N cosime.) -a(k)Iz-z 1
-- f E .3 (kr C I J k 3 (rk)dkJ s E S. ( )3+

4TeW 0 = 1 sintmB.) m i ak)
1

and use of Hooke's law yield the following expansion coefficients for

the stresses involved in the boundary conditions

m (r,z)

zz

m  2 2 N cos(mei.) -a(kllz-z11

JEC2k- S 1 3 ki Ie IU3mrk) dk (71)tire i mr a k) m

0 j:I sin(m8 m

Tm it,z) + Tm (r,z) :
rz C T rz

WE - N cos(mS C -aekjz-z

5(m f[2k E S I signlz-z ) J (kr )e - Jkm (krldk

:1 sin(mB C

(72)

In the case of a fluid layer eq. (71) must be modified to

Tm (r~z) z
zz

Ah 2 - N coslme C -C(kClz-z I

- 1 S I (kr C e J k 3 (kr) dk (73)41ww 1 m ± Q(k) m
o i 1: sin(m I

Here only simple compressional sources have been considered, but shear

wave sources, involving the potential A or Y, can be treated in

exactly the same way, leading to integral representations similar to

eqs (6) - (72) for the field parameters.
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2.5 Solution technioue

2.5.1 Numerical integration of the Bessel transform

The integrals of ((47),(48) and (49)) may be written in a simplified

manner as

f G(k) 3n (kr) dk (74)n
0

The Bessel function may be written as the sum

2 J (z) H (1)(Z) - H(2) (Z) (75)
n n n

where HM () and H (2) ( represent the Nankel functions of first and
n n

second kind, order n respectively. For the time-dependent solution

choosen here (exp(jwt)), the Hankel functions of first and second kind

represent in- and outgoing waves respectively. As there are no

backscatter elements included in the model, the Bessel function may be

approximated by the Hankel function of the second kind. This

approximation is of course not valid in the region between source(s)

and the center axis. Otherwise the validity of this approximation is

discussed in (5]. The Hankel function is substituted for its large

argument approximation as given by

1/2 ( - vs

H (2) ( Z)/2 e2)z 2 4 (76)v Iz

We will evaluate the integral at discrete steps according to

k k * nAk n 0,1,2. N-I (77a)

r r0  * mAr m 0 ., .. N-i (77b)

AkAr z 2w/N (77c)

Insertion or (76) and (7?) into (74), and substitutii order of

integration and summation yields
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ff VT
1 ( -- /2 Ak e- (k0 r - 4

2 Tr

N-1 -n&kr 0  
.'nm

[ Gk + nk) 12 e N tVb)

n=O (k - n~k)

This expression is clearly a preweighting of the integrand and

thereafter a discrete Fourier transform. 
It is evaluated by means of

the FFT algorithm, and thereafter postweighting.
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Z.5.2 The global matrix method

Solution of the problem at hand implies finding the values of the

potentials a.b and c that satisfy the pertinent source and boundary

conditions.

At each interface u and T must be continuous. At solid/soliG
z zz

interfaces we must in addition require that ur, U8 1Trz and T8z be

continuous. At solidfliquid interfaces the shear stresses must vanish.

We express these boundary conditions with (34), (35). (36) and the

expressions for stresses obtained by the use of Hookes law. These

boundary conditions may readily be reformulated in terms of the

angular expansion coefficients which, when collected in a column

vector become:

um(r,z)
z

um(r,z)+u (r,z)
r 9

Um r.z)-u mr,z)

umrz mrz- rZ
FT r z) Tm (rz)

zz
m m

Tzm (rz)-T z(r,z)
rz -Tz (79

The unknown potentials are so defined that the depth coordinate z

within this layer is 0 at the upper layer interface. The boundary

conditions at interface n which is the lower interface of layer n may

thus be stated:

Flr . Fr,z - F
m  

(r.0) - (r O) = C 1801
n n n n n.1 n.1 

where subscript n denotes the layer number, z d!notes the thicknessn

of layer n and the terms with tilde - as before denotes source terms.

Insertion of (611, (59), (62) 1(64) in the fluid case) and (63).

interchanging order of integration and summatin, reduces (80) to a

set of integrands which must vanish. Thus we are left with a set of

linear equations in the unknown potential functions and the source

contributions which becomes
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A B
m  

-A B
m  

= R
m  

Rm
ni1 n n.1,u n*1 n 1,u n,l

where the unknown potential functions for layer n are

a (k)
bT,nlk

b m n(k)
1,n

mm 
n (k)

m

m

2.n (k)

2,n (82)

For a solid layer the matrix A for the upper interface in layer n is

A (k)

- k 0 a k 0

-k k -k -B k

k -B k k< k

(2k 2-g 2) -2kOW 0 (2k 2-g 2)P 2kRp 0

2kap -(2k 2-g 2)p -ki -2kap -(2k -g 2N kop

(2ka (2k -2)9 ) -kRP 2kaw -(2k 2-g 2)W kRWji (83)

while for a liquid layer, the matrix becomes

A (k)
n,u

-a 0 0 0 0

-k 0 0 -k 0 0

k 0 0 k 0 0
-Ah2 0 0 - h

2  
0 0

0 0 0 h 0 0

a 0 0 0 0 (84)

The matrix for the lower interface of a layer is obtained by

multiplying each element with the appropriate exponential ,i Oiven

by (61) - (641 with zzz i e:n
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A (k) A (k) I (k) (85)
n. I n, u n

where

I (k)
n

[ -ak)zn 0 0 0 0 0

e k)Zn 0 0 0 0

0 e-01 0 0 0

0 0 0 e k )Zn 0 0

o0 0 e ( k )zn 0

L 0 e k;Zn (86)

The source contribution vector is

-sgn(z-z

-k/(x

C N cos(m9 I - I k/cL

R
m  

E S J (kr) e 1 22
n 4rw 1II sinlmO m 1 p 2k -2 /cc

I 2kIsgn~z-z

-2kpsgn(z-z
(87

where z:O and z for upper ind lower boundaries respectively.n

Finaly the local sets of boundary equatiuns are mapped .ntu a gluual

set of equations
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[m

[A3 .1 ][-A 4 .]

mm

Rm2 'u 1.1
m

RmR

rn m

R
m  

- R
m

4,u 3,1

R
m  

R
m

N.u N-1 1 ( 8)

The global matrix method, as opposed to matrizant methods[3] is

presented in [9].
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2.5.3 Numerical consideraion'

A commonly known problem with the matrizant method on which FFO models

have been basadf3], is encountered when dealing with thick l.sers in

the evanescent reqion of the horizontal wavenumber spectrum. The wave

amplitudes, represented by depth dependent exponential functions with

positive real arguments, may attain large values. it is ,f course

obvious from physical considerations. that the energy contert cannot

grow beyond finite values, so this situation must be considered as a

numerical artifact. Several techniques are utilized to remedy this

sItuatIon.

The matrices A and A are made dimensionless by dividing then~l n~u

stress- and pressure-related coefficients by w 'n and by the

horizontal wavenumber respectively. !n denotes the density of an

intermediate layer. This will ensure that the coefficients are within

the same order of magnitude.

Each layer is described in a separate local coordinate system with

origin at its upper surface. This will ensure that the value of the

depth does not exceed the layer thickness.

The order of potentials, as defined by (82) ensures that the

coefficients, which attain hign values due to the above mentioned

exponential functions, come close to the diagonal of the global

maIt _x.

These remedies will. together with standard pivoting bV columns.

ensure that the solution of (88) by means of Gaussian elimination.

will be uiconditionally stable[?].

The above statement must, however, be slightly mcJilfxed when we have a

source in a thick layer with evanescent propagation conditions.

Numerical instability due to the nonvanishing pertinent row of the

rsghthand side of (881, may occur. This problem is easily circumvented

by introducing dummy-interfaces lust above and below'the source(s).
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Coherent sources on both sides of a thick layer may also represent a

numerical problem. but as this situation is regarded as ielnj less

important in most physical applications. it is not considered a

serious limitation. It is of course possible to solve the problem

separately for both these sources and superpose the solutions.
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2.6 Numerical example: a point source in fre space

The example of a point source in free space is a well suited example

for verification of the model as the correct result is readily

calculated as 20log(r). Free space means a water layer, containing

source and receiver, surrounded by upper- and lower-halfspaces

consisting of water with identical parameters.

This example is however, ratner a challenge for the FFP model, as the

integrani easily becomes undersampled due to the branchpoint arising

from tne square root in the denominator of (73) (the reader is also

referred to (50)). Hero. the itegrand is sampled at 8196 points

-6 -1 -1
ranging from 626 xlO m to 0.465 m

Figure 2.1 shows a comparison between model outputs with the source

located on the center axis and also with the source displaced 100 m in

positive x-direction from the center axis. I e the model is run' in

two- and three-dimensional modes respectively. In both cases the

frequency is 100 Hz. the receiver is located 40 m above the source.

The three-dimensional case required an angular expansion order of 110.

Curves a and b show the transmission loss for the two-dimensional- and

three-dimensional-cases respectively. The region of validity for the

computed solution begins at a greater distance from the source in the

three-dimensional case. as the approximation to the higher order

Hankel functions has larger remainders than what is the case for the

O-order approxmation. The computed solution is of course not valid

between the source and center axis as only che Hankel-function

corresponding to outward propagating waves is included. Figure 2.2

shows the computed transmission loss in all directions for the

three-dimensional example. The line markers x=a and yaD are drawn.

Ill I • I Ii J MiI I I I
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3 THE INVERSE PROBLEM

3.1 Introduction

The ob-iectsve for solving the inverse problem is to determine the

parameters which have significant influence on sound propagation in

the water layer(s) in a shallow water environment. Determining the

parameters within 'acceptable' confidence bounds, will enaole us to

model their effects and thereby predict sound propagation in the water

layer under the influence of the ocean bottom.

To my knowledge, there has not been any earlier reports of attempts to

infer ocean bottom parameters based on the methods to be utilized

here.

There is no commonly accepted definition making a clear and concise

distinction between deep and shallow water. The term "shallow water"

is used here to imply an acoustic environment and an acoustic

wavelength sufficiently large (with respect to uepth) that sound

propagation is suited for modelling by wave theory.

While sound propagation in deep watei is well handled by ray theory,

multiple reflections in the shallow water situation create a rather

complicated ray picture. If weas here, limit ourselves to a

horizontally stratified medium, multiple bounces may interfere

constructively or destructively, and thus show a resonator effect.

This effect is. as will be demonstrated, readily described in the

frequeno, -hriontat wavenumber IF-K) domain. A Pro~ection of the

signal space occuring in a horizontally layered medium into the F-K

domain will readily show modes of propagation, their Phase- and group

velocities, cut off frequencies and also important features of the

ocean bottom.

The term 'mode' is used in a more cree sense than in most (. the other

literature. Here it IS taken to mean the loci of points in the --K

domain where constuctive interference occurs, not limited to :h,

discrete region of the K-spe,:trum. The term 'normal mode; normal
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*rthoqonal) does not enter into this discussion as we do not define an

appropriate inner product onto the observation space. Elements of such

an inner product space would be values as a function of depth.

The nomenclature for characterization of interface waves is adopted

from [18]. A Rayleigh wave can occur on the interface between a solid

and vacuum, a Scholte wave between a solid and a liquid and a Stoneley

cave on the interface between two solids.

A suitable observation space for projection into the F-K scae is a

horizontal array. In this work, data from a seismic research vessel

towing a super long air gun array (SLAG) and a 52-element hydrophone

array is used, not because this particular configuration is %deal for

ouJr purpose, but because it is available.
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3.2 Some basic properties of a monolayer waveguiOe

It is not intended that thi chapter snall be In exhaustive

develpoment of waveguide theory. The purpose is )ust to establish some

fundamental properties whicn will aid us in understanding how to

interpret an F-K diagram. The complete theory is. of course. covered

implictly in the previous section on the forward problem.

upper half space - vacuum

0 surface

in termediate laver - water

a Ia

ocean bottom

lower half space - ocean bottom

Figure 3.1 A monolaver waveouide. a and a refer to eouatun 594)

The essential elements of a water layer bounded by surface and ocean

bottom are shown in fig ire 3.1. Refering to equation (64). the depth

dependent Dart of the separable solution consisks of an up- and

downward propagating component. The boundary conditions are equivalent
withs reflections o,:curing at the boundaries. Constructive interf i'ence

between a and i will occur when

1 2,
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. ) e s I R e (G ) -25(,u .k)z = a ,<

where P (p) e
3
o (1p) are plane wave reflection coefficients dnd P is a

characteristic angle, either incident or grazing. The subscripts s and

b refer to surface and bottom respectively. (891 is equivalent to

Rs  R b  : 1(90a)

and

s  b az = ( -n)2r, n = 0.1.2.3.... .'3o

(9Oa) imolies a lossless medium and totally reflecting boundaries.

corresponding to a resonator with an infinite O-factor. "Is 1; f

course an approximation. We will not dwell upon its validity, as the

purpose for its application is to establish a fenomenological

framework for a basic understanding of waveguide properties. (SOb) is

a resonance condition. As an approximation, we will assume the

reflection coefficient at the surface to be -1 for all (. The

reflection coefficient, as well as the impedance, for the ocean bottom

represent a neccessary and sufficient description of the influence of

the ocean bottom properties on sound propagation in the water layer

for a horizontally stratified medium. The effect of more than one

) ocean bottom layer may be collected in the ocean bottom reflection

coefficient, but it then becomes a function of both frequency and

horizontal wavenumber as reflections are related to incidence angle

and propagation between boundaries is related to vertical wavenumber.
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3.3 A test case

Figure 3.3 shows an F-K diagram of a test case with parameters as

shown in figure 3.2. The source is 7.5 m- and the receiver is 14 m

telow the ocean surface. The diagram is the module of the preweighted

integrand given by (78). Radiating from the origin are five line

markers which in descending order of phase velocity (,/k) indicate the

.c:i of puints constituting constant:

cumpressional wave phase velocity in the ocean bottom

-shear wave phase velocity in the ocean bottcm

-Rayleigh wave velocity at the ocean bottum interface

-compressional wave phase velocity in the water layer

-Scholte wave velocity at the water/solid interface

... ...
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upper half space - vacuum

0 m

intermediate laver - water

comp. wave velocity 1500 m/s

density 1000 kg/m

attenuation standard

50 m

lower half space - ocean bottom

comp. wave velocity 4000 m/s

shear wave velocity 2000
3

density 2000 kg/m

comp. wave attenuation I dB/\

shear wave attenuation 2

Figure 3.2 Environmental parameters for single bottom layer test case

On the ordinate axis ksO, i the order of increasing lrequency, the

0.. 1.. 2.. 3. and )ust darely the 4. mode may be iaentified. The i.

mode originates at the .riqjn.

Figure 3.4 shows module and phase of both reflection coefficient and

ocean bottom impedance for the same test case. The l.ft c l,mn from

top to bottom shows module of reflection coefficient including the

evanescent region, module of reflection coefficient ,c LdIlrg the

evanescent region and finally the phase of the rpfle,:t n :joffi:i jjent

including the evanescent region. The right col~mn shows module and

phase of ocean bottom impedance, both including the evanescent region.

For abscissa the horizontal phase velocity is choosen as it offers an

i ... . . . .... ...... ..... . ... . . . _ _.. . .. . ._
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easy compaison with the characteristic velocities of the environment.

The horizont3l phase velocity relates to various alternative

parameters as

c c
- 9 1 (91)

h k sinhp ) cos (L ) p

where p, and pg are incident- and grazing angles respectively and p is

slowness.

Figures 3.5 to 3.10 are identical to figure 3.4, except for the broken

lines which indicate perburbation of environmental parameters. In

order of appearance, the effects of the following parameter variations

are shown:

-compressional wave phase velocity in the water layer

-compressional wave phase velocity in the ocean bottom

-shear wave phase velocity in the ocean bottom

-density in the ocean bottom

-compressiunal wave attenuation in the ocean bottom

-shear wave attenuation in the ocean bottom

The source and receiver are locater' fairly close to the ocean ;urtdce.

As we are dealing with a homogeneous water layer, there is no inherent

mechanism for trapping acoustic energy in a channel close to the

surface, hence energy produced by the source and detected by our

receiver will be influenced by bottom properties ad constructive

interference as indicated by (89).

The 0. and the higher order modes will be commented on separately, as

their behaviour differs.

3.3.1 The 0. mode

The 0. mode originates at the origin, it has no pronounced low

frequency cut-off. At the origin, where w and s approach zero, the

vertical wavenumber ((50).(26)) aproaches zero. AS the depth is

constant. az in (90b) may be taken to be zero, thus, for n:Q, the

phase of the bottom reflection coefficient approaches f.



43

As is well known, the Rayleigh wave occurs at the interface between a

solid and vacuum. In the solid, it is evanescent in the z-direction

and is thus a surface wave with horizontal wave velocity below the

free shear wave velocity of the solid. For a liquid/solid interface.

The Rayleigh wave becomes a pseudo-Rayleigh wave: its horizontal phase

velocity becomes complex. For a vacuum/solid interface, a Rayleigh

wave implies vertical displacement and vanishing normal stress at the

solid/vacuum interface: vanishing impedance. The curve for module of

ocean bottom impedance in figure 3.4 shows a dip at what is here the

pseudo-Rayleigh wave horizontal phase velocity: 1865.6 m/s.

From the graph of the ocean bottom reflection coefficient in figure

3,4, it can be seen that while the module has a dip at the Rayleigh

velocity, the phase equals -n. Solution of (90b) for n=O requires that

the vertical wavenumber is equal to zero. Returning to figure 3.3, we

can see that as the 0. mode developes from the origin, at a phase

velocity asymptotically equal to the Rayleigh wave velocity (actually

figure 3.3 does not show this acuratly, but a detail of this corner

near the origin would), its energy content increases due to increasing

module of reflection coefficient, For increasing frequency, figure 3.3

shows the phase velocity to decrease and go below the water velocity

and approach the Scholte wave velocity. From figure 3.4: as the

horizontal phase velocity decreases from the Rayleigh value, the

module increases and the phase increases through a peak and returns to

-n at the water wave velocity. Again, we have a solution where the

vertical wavenumber a is zero, but now because the horizontal

wavenumber equals the wavenumber of a free plane wave in water. In

further decreasing the horizontal phase velocity, we come into the

evanescent region, characterized by a real (pure real for a lossless

medium) vertical wavenumber. As we enter into the evanescent region,

the acoustic coupling between surface and bottom diminishes, and the

3. mode fades out. Obviously, if properly excited, the 0. mode will

transfer energy into a pure Scholte surface wavE. The Scholte wave

velocity is for this case 1399.2 m/s. Figure 3.4 shows a strong peak

in module of reclection coefficient at the Scholte wave velocity.



Now having given an outline of the basic mechanisms of the 0. mode.

we can use the perturbated reflection coefficients of figures 3.5 to

3.10 to look into how variation of the environmental parameters

manifest themselves.

As is well known, the Rayleigh velocity is governed by properties of

the solid, while the Scholte root is governed by water properties as

well. For more details, the reader is referred to appendix 1 and also

to (18].

The location of the dip in module of reflection coefficient at the

Rayleigh wave velocity is highly dependent upon the shear wave

velocity. figure 3.7, and barely upon compressional wave velocity,

density and shear wave attenuation. The dip value, however, is

strongly dependent upon the shear wave velocity and attenuation.

3.3.2 The higher order modes

The higher order modes (n=1,2_. in (90b)) have the same general

behaviour and will therefor be commented upon collectively. It is

found advantageous to divide the higher order modes into separate

regions characterized by the horizontal phase velocities as follows:

-continuous region: cc < v h( -

-intermediate region: c S< v h< cc

-discrete region: cW < v h< cs

As mentioned earlier in this chapter, the F-K plot in figure 3.3 is

separated into these regions by the line markers.
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The continuous relion. For the continuous region, we note that,

contrary to the 0. mode, the higher order modes have a low frequency

cutoff. This is clearly seen in figure 3.3 where the modes originate

from the axis s=O. For s=G, the vertical wavenumber a becomes w/c.

From figure 3.4 and figures 3.5 to 3.10, it is seen that for this

region the phase of the reflection coefficient equals zero for all

parameter variations. Consequently, (90b) simplifies to

W z = T (2n-1) n=1,2,3 ..... (92)
c 2

As the horizontal phase velocity is greater than the compressional

(and of course the shear) velocity of the ocean bottom, energy is

leaked into the bottom as both compressional- and shear waves, and we

do not have a trapped wave in the water layer. Consequently, the

transmission loss is so high in this region that it is usually

considered as non propagating. It should be noted, however, that for

this test case, we are considering a hard ocean bottom with

significant impedance contrast between water and bottom. Hence, even

for the continuous region, the reflection coefficient is appreciably

high.

While, as a function of increasing horizontal wavenumber, the

horizontal phase velocity decreases from infinity, the group velocity

(dw/ds) increases from zero. For this region, the increase in group

velocity is caused solely by variations in frequency and horizontal

wavenumber such that the vertical wavenumber a remains constant.

For the continuous region, the module of reflection coefficient is

dependent on the impedance constrast between water ano solid, hence

the phase velocities and density. As the phase remains unchanged,

these parameters do not influence the loci of maxima in the F-K

domain.

Horizontal phase velocity equal to ocean bottom compressional

velocity.

The highest velocity line marker in figure 3.3, indicating a

horizontal phase velocity of 4000 mts equal to the compressional wave

velocity of the ocean bottom, passes through peaks: one for each of

the higher order modes. These peaks are clearly seen as a peak in

module of reflection coefficient in figure 3.4. Figure 3.6 shows how



46

the peak "follows" ocean bottom compressional wave velocity. Figure

3.7 shows how its shape is influenced by ocean bottom shear veiccity.

It should also be noted that the peak is slightly influenced Dy ocean

bottom compressional wave attenuation, unaffected by ocean bottom

shear wave attenation and also that it is approximatly at this point

the phase of the reflection coefficient begins to differ from zero.

Intermediate region.

In the intermediate region, free propagating shear waves may be

coupled into the ocean bottom, while compressional waves undergo total

reflection. The group velocity increases significantly in this region.

Horizontal phase velocity equal to ocean bottom shear velocity.

When the horizontal phase velocity equals the ocean bottom shear

velocity, the bottom becomes totally reflecting, Hence neither

compressional- nor shear waves are coupled into the ocean bottom as

free propagating waves. According to [I], the group veiocity equals

the phase velocity: the ocean bottom shear wave velocity.

The discrete region.

The discrete region, so termed because the horizontal wavenumber

spectrum for a given frequency becomes discrete and contains the

propagating part of the energy. As neither shear- nor cumpressional

wrves are transmitted into the ocean bottom half space, all energy is

trapped in the water layer: we have a wave guide effect. In this

region, the phase velocity converges from above- and the group

velocity converges from below to the phase velocity of the water

layer.
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3.4 Description of data collection and system response

The measured data have kindly be"n supplied by the Norwegian Petroleum

Directorate. They were gathered by the seismic :essel M/V Malene

Ostervold operated by GECO. The source was an airgun array and the

receiver was a seismic streamer, both towed behind the vessel.

The data were collected on 31 July 1979, north of Bear Island: 750 ?O'N

18 050'E. This area is characterized by its hard bottom, thus living

rise to multiple reflections between ocean-surface and -bottom.

The data are identified as line 7520-T9 shots nr. 9191 to 9296.

The streamer is towed at 14 m water depth. It consists of 52

hydrophone groups, the distance between their centerpoints are 50 m. A

group is formed of two subgroups each of length. 22 m and consisting of

32 equispaced hydrophones. The spacing between subgroups is 3 m. The

signals from each hydrophone within a group are summed without

weighting.

The hydrophone group separation, 50 m, implies a spatial angular

sampling rate (wavenumber) of 0.126 m and a Nyquist rate of 0.063
-1

m

When taking the efects of the ocean surface into account as the

Lloyd-mirror effect, the modulus of a horizontal wavenumber respons

becomes

H t e - e N (I - e j
s
A ) (I - e- 32r l ) (93)

where

: s6 (94)

11!c - s2)1/2 d (95)

and 8 is the hydrofon spacing (22/31 m), A is the distance between the

first hydrophones in a subgroup (25m), N is the number of hydrophones
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within a subgroup (32) and d, is the nominal streamer depth (14m)

The signals from each group are sampled successively at a rate of 250

HZ. There has not been performed any filtering in the low frequency

end of the signal spectrum, the high frequency end has been filtered

through a low-pass filter 3 dB down at 64 Hz decaying 72 dB/octave.

The distance from the source centerpoint to the middle of the first

hydrofon (offset) is 180.75 m.

The source has been towed at a nominal depth of 7.5 m. Tho airgun

array was fired every 50 m. The frequency spectrum for the source is

shown in figure 3.12. If we assume the source geometry depicted in

figure 3.11 and include the Lloyd-mirror effect, we obtain the modulus

of the source horizontal wavenumber spectrum as

H (I e 2-3 2 1 e I t96)
so

where

r (( )2 s2)1
/ 2  

d (97)

2 c 2

8 dEnotes the distance from first to i-th. source and d 2 the source

depth. The effects of source spacing transversal to centerline of

ship's track have been disregarded.

Multiplication of (33) and 096) gives an estimate of the modulus of

the horizontal wavenumber sespons of the data collection system. This.

together with a piecewise linear approximation of the source frequency

spectrum, is shown in figure 3.13. The response is normalized with

respect to total power. Figure 3.13 a shows a surface plot on a linear

scale, while figure 3.13 b shows the same data in a contour plot on a

logarithmic scale with 5 dB between contours. Lloyd-mirro. effect of

source and streamer appear as a null radiating from the origin to

(0.12,28) while th; null originating in (0,51} is caused by the

streamer. The corresponding null produced by the source falls outside

the figure bounds. The source sidelobes are seen as maxima and minima

at constant k-values. The streamer produces a first minimum at a
-1

horizontal wavenumber of approximately 0.12 m and therefor acts as a

spatial low pass filter with first minimum at twice the Nyquist

frequency.
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3.5 Preprocessing and display of measured data

In order to bring the measured data on a form comparable to the model

output, inverse weighting corresponding to the post-FFT weighting

given in (78) is performed. It has been experienced that it is an

advantage to Hanning weight the data in the X-direction.

A two-dimensional FFT is performed. The FFT lengths are 64 points in

X-direction and 1024 points in T-direction.

The displayed data is limited to 60 points in K-direction and 250

points In F-direction. It is common within the seismic community to

display the K-direction showing both positive- and negative values of

horizontal wavenumber, but as we have good signal to noise ratio, it

is Fair to assume that energy propagation in positive direction (from

source and aft along array) is dominant. This agrees well with the

analyzeJ data. We have therefore displayed the first 60 points in

K-direction in the order of increasing FFT-bin. The frequency

direction is limited to 250 points as we do not have significant

energy content above this frequency.

A normalization based on a total power content in the displayed data

to be equal to unity is performed. The amplitude of the F-K spectrum

is displayed on a linear scaled surface plot and a logarithmic contour

plot with 5 dB between contours in figure 3.14.

nMmMpM • •
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3.6 Modelling of the data collection system

Offset

For application of our model,offset is defined as distance from axis

rsO to first receiver position. It is standard input and follows from

equation (78). Offset is set to be 155.25 m, see figure 3.11.

Source array

As the total length of each source subarray is 8.65 m which equals

approximatelty 0.28 X at 50 Hz, we will approximate each subarray as a

monopole. The source array is readilly modelled by application of the

previously derived three-dimensional capablities of our numerical

model. The source array is aligned with the axes 0-D, z=7.5 m, the

center subarray on the axis r=O.

Receiver array

The hydrophone group separation, 50 m, sets an upper limit on
-1

observ.,ble nonaliased horizontal wavenumber: approximately 0.06 m

Our modelling of the receiver array approximates the actual array by

computing a 4096 element array with hydrophone spacing 0.79 m. This

array is divided into 64 subgroups, each subgroup consists of 64

hydrophones with spacing between hydrophone groups also equal to 0.79

m. Application of equations (77) with hydrophone separation 0.79 m

gives the total range of horizontal wavenumber to be 8.855 m
" 

. It is

thus sufficient to compute a horizontal wavenumber spectrum ranging
-1

from approximately zero to 0.12 m anI set the region ranging from
-1 -1

0.12 m to 8.855 m equal to zero

As previously mentioned, the receiver array consists of 52 hydrophone

groups, each again consisting of 64 hydrophones. The approximations

assume: each hydrophone group to consist of 64 equispaced elements as

opposed to the two 32-element groups spaced 3 m apart of the actual

array, that the separation between groups is 0.79 m as opposed to 3 m

and that the array consists of 64 as opposed to 52 hydrophone groups.

These approximations are not considered to be of significant

consequence, because, as demonstrated in figure 3.13, the role of this

hydrophone clustering is to create a spatial low pass filter with
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fi r,;t minimum 3t approximately 0. 12 m

The reasons for making these approximations is to secure that the

width of the horizontal wavenumber bins remain unchanjed and that all

energy represented by the original horizontal wavenumber spectrum is

included in the modelled response.

't,- xquenc, f, r modelling o receiver array is:

-for each of 128 frequencies:

-compute 64 point horizontal wavenurnoer spectrum from 0.- to
-1

0.12 m

-preweight according to (78)

-include zeroe, up to 4096 point; :orresponding to

horizontal wavenumber 8355 m

-perform 4096 point FPT over preweignted K-spectrum

-postweugnt accorli 
1  I

-include zeroes in freqien y ins 2CC

-256 point FFT over all r..' ie

-take real part

-summation over 64 hyurophoe Iu pS , each with 64 hydrophones

-invelse postweighting according to (78)

-64 oint FFT over X-direction

-256 point FFT over T-direction

Figure 3.14 shows an F-K diagram for the same test case that we have

investigated previously, except for that the source- and array

configuration is modelled as described here. It becomes clear that the

effects of source- and receiver geometry is to emphasize the

continuous region of the F K domain. This is obviously an advantage

for the seismological purposes for which the system is designed, as it

directs energy down into the ocean bottom.

As we described in the chapter on data collection system response, the

effect of the source array is to produce a downward propagating main

lobe.
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p

3,7 Geoacoustical background information

From (19] we take the following which shows the prior known

geoacoustical background information available for the area in which

our shots have been recorJed:

layer number 1:

water

compressional wave vel. (m/s) 1475-1485

density (kg/m
3
) 1000

thickness (m) 50-100

layer number 2:

age 3urassic-triassic

sediment & rock type shale-sandstone

compressional wave vel. (m/s) 4200-4800

shear wave vel. (m/s) 2100-2400

compressional wave attenuation (dB/N) 0.3-0.8

shear wave attenuation (dB/\) 1.0-2.8

density (kg/m 2450-2650

thickness (m) 800-1000

layer number 3:

age triassic

sediment & rock type shale sandstone

compressional wave vel. (m/s) 5100-5500

shear wave -l. (m/s) 2250-2750

compressional wave attenuation (dB/4) 0.1-0.5

shear wave attenuation (dB/X) 0.3-1 q

density (kg/m ) 2.65-2.75

thickness (m) 800-1200
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layer number 4:

age

sediment & rock type

compressional wave vel. (m/sI 5800-

shear wave vel. (m/s) 2800-

compressional wave attenuation (dB/X)

shear wave attenuation (d8/X)

density (kg/m
3  

2800--

thickness (m)

can be partly covered by 0.3-3 m of till, glaciomarine sediments or

Holocene mud
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3.8 Identification- and modelling of events in the measured data

F-K diagrams for shots numbered 1. 52, 100 are shown in figures 3.15

to 3.17 respectively. As the sailed distance between each shot is 50

m, the distance from first to second and third plot is 2.5- and 5 km

respectively.

Before going into a more detailed analysis, we would like to note the

resemblance between the three figures, which of course suggests that

the parameters which govern propagation in the water layer are

basically the same within this 5 km stretch. As a consequence, the

environmental parameters we may identify are relatively valid for at

least this area. It is in all figures possible to identify the 0., 1.,

2. and 3. mode. It is also possible to identify aliased energy in the
-1 -1

0.12 m to 0.24 m horizontal wavenumber region, especially in

figure 3.17. This will be more commented on and exploited.

3.8.1 First approximation

We will now, having established a ;ramework for understanding some of

'he features of the F-K plot, proceed to attempt to interpret the F-K

diagrams for the three shots we have presented. We will concentrate

our attention on the first shot, shown in figure 3.15.

We will start out by determining the average velocity for

compressional waves in the water layer. As we already know from a

previous section, the phase velocity of a mode will approach the water

velocity assymptotically from above, the group velocitj will approach

the water velocity asymptotically from below, and hence the tangent of

a mode at *high' F-K values represents the water velocity. From figure

3.15, a trained eye can observe that the I. mode is spatially aliased

and thus continues from approximately (0,30). The contour plot of
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figure 3.15 is shown in figure 3.18 where a line marker for 1466 mis

passing through {0.12,281 is drawn, also for the spatially aliased

region. The first mode lies above the line marker: its phase velocity

is greater than 1466 m/s and its group velocity (slope) has a lower

value than that of the line marker's 1466 m/s. It should now, if

neccessary, be easier to identify the aliased 1. mode in the surface

plot of figure 3.15.

We should also notice that the 1466 m/s line marker crosses the 0.

mode close to its peak. As we know, this peak is an effect of both the

medium and the source geometry, so we will not draw any firm

conclusions based on the peak. We notice, however, that the

assymptotic phase velocities are above the line marker at low

frequency-wavenumbers in accordance with the previously described

testcase. The 0. mode will be looked into in the following.

The line marker in figure 3.tB passes through (0.12,281 in the F-K

plot. The points (0.12,27.51 and {O.12,28.5} correspond to phase

velocities 1440 rn/s and 1492 m/s respectively (.1.8/). These points

are in the order of reasonable observation accuracy. Obviously, this

is not a very accurate method for determining ocean sound speed

velocity by the underwater acoustician's standards.

We now proceed to estimate the cut-off frequencies for the 1., 2. and

3. mode. This is found to be done simplest by using a ten-point

divider along the frequency axis. With point 0 at the origin, point I

at the 1. mode, point 3 at the 2. mode and so on, we arrive at an

estimated cut-off frequency for the 1. mode to be 7 Hz. Inserting this

value and the phase velocity for compressional waves in the water

layer, 1466 m/s, in equation (923, yields a water depth of 52.3 m.

The surface plot in figure 3.15 shows two very distinct peaks in the

1. and 2. mode. These peaks are partly a result of the source

geometry, but they are much sharper than the lobes of the source

diagram, see figure 3.13. We take these peaks to be at the phase

veloi'ty of the compressional wave in the ocean bottom and draw a line
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through them as shown in figure 3.19. Again, the accuracy is limited,

but if we accept the point (0.1189,70} (1), we arrive at 3700 m/s.

Estimation of the ocean bottom shear wave velocity is not quite so

straightforward as the other quantities. If the data were not

"contaminated" with the source array structure, and also if the

hydrophone spacing were closer so that we could observe a higher

horizontal wavenumber Lnalia3ed, we could look for the 'point(s)'

where the F-K response rises up and becomes discrete and also perhaps

for the point(s) where the group- and phase velocities are equal. As

this is not the case here, we shall have to rely more heavily on the

information the 0. mode may be able to yield.

An estimate of the Rayleigh- and Scholte wave velocities for the ocean

bottom is indicated by the line markers in figure 3.10. It must be

appreciated that the determination of these quantities is rather

subjective.

The Payleigh- and Scholte wave velocities for som - values of shear

velocity, computed as described in appendix 1, is shown in table 1.

The compressional wave phase velocities for water and bottom are those

that we have arrived at: 1466 m/s and 3700 m/s and the density of the

3
ocean bottom is assumed to be 2500 kg/in
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shear p.Rayleigh Scholte

[m/s] [m/s] {m/s]

1200 1137 1137

1400 1322 1322

1600 1503 1377

1800 1682 1370

1850 1726 1368

1900 1768 1364

1915 1780 1363

1950 1811 1362

1990 1844 1358

2000 1853 1358

Table 1: Computed values of pseudo-Ravleih- and Scholte wave

velD,:Itles vs. shear velocity.

From table 1, we see that for ;heal velocities greater than the water

velocity, it is the pseudo-Rayleigh velocity that is m-.'tlj influenced

by vdiiatlons in sound speed. All the computed Scholte wave velocities

lie higher than 1204 m/s as estimated in figure 3.20. We will for the

time beeing assume the shear velocity of 1915 m/s which matches the

estimated pseudo-Rayleigh velocity, 1780 m/s figure 3.20. The line

marker for 1915 m/s passing through [0.12,3G.57}, seems to be somewhat

too low for the group velocity to equal the phase vel.ocity in the 1.

mud This is not possible to determine with certairity. but it would

seem that a somewhat higher shear velocity: in the o der of 1990 m/s,

passing through {0.12,38} in figure 3.21, would give a better fit tu

the 1. mode, This implies a pseudo Rayleigh velocity of 1844 m/s (from

table 1) passing through {0.12,35.2) which is acceptable when adopted

to shot number 1 figure 3.21.
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The geoacoustical model presented in chapter 3.7 suggests higher

compressional- and shear velocities in the first bottom layer:

4200-4800 m/s and 2100-24u0 m/s respectively. The same bottom type,

shale-sandstone, may according to appendix 2. however, have

compressional- and shear velocities in the range 2100-4800 m/s and

1200-2400 m/s respectively. The estimated values should thus be well

within geological acceptable bounds.

We do not see any feasible criteria for determination of ocean bottom

density and will, based on the geoacoustical model on chapter 3.7,

3assume it to be 2500 kg/m. The losses will not be considered quite

yet.

Summarizing, we have arrived at the following conclusions for a first

approximation to the environmental data governing shot number 1.:

compressional wave phase velocity in water: 1466 m/s

compressional wave phase velocity in bottom: 3700

shear wave phase velocity in bottom: 1990

water depth: 52.3 m

density of bottom (assumed): 2.5 kg/m
3

attenuation of comp waves in bottom (assumed): 2 d0/X

attenuation of shear waves in bottom (assumed): 2.5

Line markers indicating these velocities and also ccrresponding

pseudo-Rayleigh- and Scholte velocitiez are shown in figure 3.21

The modelling of this 1. approximation to shot, number 1 with

simulation of source- and receiver system included anc excluded is

shown in figures 3.22 and 3.23 respectively.
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3.8.2 Second aporoximation

In comparing figure 3.22 with figure 3.15, the most striking

discrepancy is to be found in the continuous region wher the model

predicts a much higher level than what is seen in the measured data.

We have seen from figures 3.13 and 3.14, that the main influence of

the source and receiver geometry is to emphasize this continuous

region. For the model input data, we have appreciable impedance

contrast between water and bottom. It is thus in no way unreasonable

that the model should predict this respsnse in the continuous region.

We must therefore look into what effects of the medium we have not

taken into account. We will consider the following hypothesis:

- the source-streamer geometry is not according to specifications

- wrong density in the bottom

- wrong attenuation in the bottom

- sloping bottom

- rough bottom

- an added bottom layer with high attenuation

An erronuous source-streamer geometry could conceivably be such that

the source's main lobe is distorted to be in the horizontal wavenumber

region where the pronounced spikes occur, approximately 0.01 m
" I 

to

0.04 m
- I

. I do not wish to speculate on the likeliness of this

hypothesis, as we do not have any information to support it.

We have in our model assumed an ocean bottom density of 2500 kg/m

Decreasing the reflection coefficient at the ocean bottom would imply

reducing the density, see figure 3.8. The absolute lowest acceptable

3
value is 1000 kg/m , otherwise the bottom would float up ().

Modelling of reduced densities have shown that it is not sufficient to

account for te difference between model and measurement.

... . .. .. .... .. S
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Figures 3.9 and 3.10 show that the reflection coefficient in the

continuous region is not affected by variation of losses in the ocean

bottom. Therefore the hypothesis of wrong attenuation in the bottom

cannot be accepted.

Comparison of the F-K diagram for shot numbers 1. 52 and 100. figures

3.15, 3.16 and 3.17, show that they grossly resemble each other,

consequently a steep sloping bottom is not likely.

For the frequency regions of the F-K diagram we are considering, the

wavelength of compressional waves in water is in the order of 50 m and

more. As we have arrived at a water depth in the order of 52 m, it is

,ot likely that there can be bottom roughness on a scale sufficient to

produce the reduction in continuous region response we are looking

for.

Beside- the possibility of a weakly sloping bottom, we are left with

the last hypothesis: an added bottom layer with high attenuation,

inserted "on top of" the existing bottom. We should at once b-y able to

postulate some properties this layer should exhibit. As we in our data

..see" the bottom we have arrived at, the layer should be transparent

ir the sense that the impedance contrast between water and attenuating

layer is almost negligible. Its density must of course be greater than

that of the water.

Conversion of energy to shear waves cannot play an important role in

the continuous region as the particle velocity of the incident

waterborne wave is close to normal to the boundary. A snear wavP would

have to be downward refracted and hence have its *dominant particle

motion parallell to the boundary.

The lowest line marker in figure 3.23 is set at 1358 m/s whic:h is the

computed Scholte wave velocity for this situation (refere to table 1).

rhe 0. mode's phase velocity is above this value, but it is in the

process of reaching it asymptotically. We remember from figure 3.20,

however, that we have estimated the asymptotic value for the 0. mode
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to be at most 1204 m/s. For our situation where the bottom shear

velocity is greater than the compressional wave phase velocity in

water, it is this water velocity that has significant influence on the

Scholte wave velocity. We will choose to try a compressional wave

velocity in the attenuation layer to be less than in water, for

thereby .pulling down" the Scholte wave velocity at the lower

substrate layer.

The geoacoustical model in chapter 3.7 allows for a 0.3 - 3 m thick

layer of till, glaciomarine sediments or Halocene mud. Appendix 2

indicates that clay exhibits compressional- and shear velocities in

the region 100-2500 m/s and 200-1000 m/i respectively. I would also

like to add that I have participated on experiments conducted by NDRE

from the research vessel H U Sverdrup in the same area. When we

recovered equipment from the ocean bottom, it was partly covered by a

blue clayish substance.

Based on this discussion, we will introduce a thin layer with high

attenuation and acoustical impedance equal to water. The environmental

parameters for the 2. approximation to shot number I will be as shown

in figure 3.24.



62

upper half space - vacuum

Cm

intermediate layer - water

comp. wave velocity 1486 m/s

density 1000 kg/m

attenuation standard

50 m

attenuation layer - ocean bottom

comp. wave velocity 820 m/v

shear wave velocity 200

Jensity 1800 kg/m

comp. wave attenuation 10 dB/A

shear wave attenuation 5

52.3 m

lower half space - ocean bottom

comp. wave velocity 3700 m/s

shear wave velocity 1990

density 
2500 kg/m

3

comp. wave attenuation 2 dB/X

shear wave attenuation 2.5

Figure 3.24 Environmental parameters for 2. approximation to shot

number 1.
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The losses we have assumed for the attenuating layer are far higher

then what is to be expected in known bottom types [19], but they have

been exaggeratet in order to see if attenuation on this scale.

whatever physical explanation they may have, could account for the

observed low response in the continuous region.
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3.9 Discussion of fit between measurement and model

F-K diagrams for the 2. approximation with environmental data as shown

in figure 3.24, including- and excluding simulation of source-streamer

geometry are depicted in figures 3.25 and 3.26 respectively.

Comparing the F-K responses with and without attenuation layer,

figures 3.26 and 3.23, we can see that the attenuation layer has had

the effect of reducing the continuous F-K region response, but as can

be seen, from the f-K response for the 1. approximation whe. w,

simulate the source-receiver geometry, figure 3.25, we still have a

far too strong F-K response in the continuous region. Figures 3.27 to

3.32 show reflection coefficients and bottom impedances when the

parameters of the attenuating layer are perturbed. We notice that

;hear wave- velIocity, -attenuation, and density do not affect the

module of reflection coefficient in the continuous region.

Consequently, the applied shear parameters are not of significant

impurtance in the continuous region. From figure 3.32, compared with

figures 3.27 and 3.30, it is seen that on a relative basis, it is

layer thickness and thereafter compressional wave -velocity and

attenuation that have influence on) the continuous region response.

Again, comparing the F-K response with arid without the attenusting

layer. figures 3.26 and 3.23, we see that the attenuating layer has

recuced the spike also at the phase velocity equal to compressional

wave velocity in the substrate layer.

Obviously, we have not reached a solution with a perfect fit between

measurement and model, especially on a relative quantitative scale. I

do feel, however, that there is some success on a qualitative scale:

the water, bottom P- and S- velocity parameters have been observed and

interpreted in the measured data and their effects in the sense of

loci of modes, successfully modelled. Compressional wave velocities

manifest themselves clearly. The shear wave velocities, altough they
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have a more obscure manifestation, are collaborated by several

indicators (group velocity equal to phase velocity for higher order

modes. pseudo-Rayleigh and Scholte wave velocities for 0. mode).

We have not been able to verify that the assumptions on which our

numerical model is based upon, are fulfilled.

The question of uniqueness of solution has not been addressed here.

The lobe structure in the measured F-K data have been attributed to

the side lobe structure of the source array. Further modelling, not

rvported here, has shown that such a lobe structure may be c-aused by

multiple reflections within a bottom layer: inter bottom layer

resonance. If the second bottom layer has a greater P-wave velocity

than the first, P-waves may be coupled from the water into the first

layer and experience total reflection at the boundary between 1. and

2. bottom layer. This effect can manifest itself as resonance peaks in

tn region where the horizontal phase velocity is between the P-wave

.elacities of 1. and 2. bottom layer. This hypothesis has not been

csnsidered, as we have to account for the effect of source sidelobes.

whicS are in reasonable agreement with the observed lobes.

Con,$Ajsentty, a combination of F-K- and time- domain methods together

with a monoplo source, may prove an andvantage in solving uniqueness

problems.

It is concluded that this work indicates that it is possible, for

Li-atons with occurance of "many" multiple surface-bottom

r.I'lctions, to infere ocean bottom P- and 5- wave velocities from

near surface measurements.
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3.10 Suggestions for future work

For future work, I would first of all like to see data from a similar

experiment, but with a different source-streamer geometry. The source

should be a monopole. This in order not to emphasize the low

horizontal wavenumber region and also to avoid sidelobe contamination.

This would readily resolve the question of wether the lobes observed

in the measured data are caused by source sidelobe structure or inter

bottom layer resonance. A similar subarray of the type used in the

data we have examined here should suffice. It is of course neccessary

to look into the aspect of source level and signal to noise ratio. For

the streamer we should have closer hydrophone spacing so as to be able

to achieve a greater unaliased horizontal wavenumber. It would be an

advantage to repeat the experiment in the same general area. If

another area were to be chosen, one should seek a flat hard

homogeneous bottom so that the horizontal stratification assumption of

the model is fullfilled and also such that we have "many" multiple

reflections, i e a high Q resonator which consequently shows a

pronounced mode structure.

One should further be aware of the water depth, such that the number

of modes is within practical limits.

One should, in a possible continuation of this work, look into the

feasibility of combining time- and F-K- domain methods, perhaps in an

alternating iterative manner.

Automatic numerical iteration of model output to match measurement may

be undertaken in the future, but initial settings of the model must,

in my opinion, be carried out prior to numerical iteration.

A future experiment should have the capabilities of ensuring that the

assumptions on which the model is based, are fullfilled.
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4 CONCLUSIONS

A numerical model of wave propagation in horizontally stratified media

has been presented. The model is based on FFP-. global matrix- and

angular expansion techniques. The solution is exact, except for

cylindrical region in which center axis and source(s) are included.

Shot data, collected by a seismic survey configuration consisting of a

source array and a streamer is presented. Limitation in system

response imposed by source-streamer geometry is discussed and

modelled.

The effects of environmental parameters on events observed in measured

data are analyzed and modelled in the F-K domain. The fit between

model and measurement compares for location of modes, but not

completely on a relative-quantitative scale. Uniquness of estimated

environmental parameters is discussed, but not proved. The F-K methods

applied here should be supplemented with other methods, possibly time

domain methods.

A future experiment with monopole source and closer streamerhydro-

phone separation should be carried out. It shoul preferably take place

in the same area, or in a similar area which is horizontally statified

with multiple reflections, and a depth so that the number of modes is

within practical limits. Cnre samples are suggested for verification

of estimated parameters

The methods developed here indicate that, under favourable conditions,

is possible to infere ocean bottom parameters such as P- and S- wave

phase velocities from near surface measurements.
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Appendix 1: Ravleigh- pseudo-Rayleigh and Scholte waves

From D Rauch [18]. we take the following equation for determination of

Rayleigh- and Scholte wave velocities at a boundary between a solid

and vacuum or fluid respectively.

1/2 /22 XR) 1/2

4X(X- ) 1/2(X-R) 
/ 2  

(2X-1) 
2  

H = 0 (A-I)
(X-N) 1/2

where

Q C C C
H: t- -A R: X =:

w c

and the subscripts w,c,s refer to water, compressional and shear

properties respectively and unsubscripted c is the the horizontal wave

velocity. For the case of vacuum over solid, H, and consequently the

last term of (A-i) vanishes.

For both cases the numerical solution is found by stepping X through

its possible range and seeking the minimum.
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Appendix 2: Geoacoustical properties of various sediment and rock

types

Jan Inge Faleide (19] has compiled the following tabel for some

geoacoustical properties of various sediment and rock type. He has

collected these data from several sources to which he referes

collectively.

P-VELOCITY S-VELOCITY DENSITY DENSITY

(m/s) (m/s) (g/cm 
3
) (aver)

AIR 310- 360 0.0013

OIL 1250-1400 0.60-0.90

WATER 1400-1550 0.98-1.05 1.025

ICE 3100-4200 1600-2000 0.88-1.07 0.95

CLAY 1100-2500 200-1000 1.50-2.60' 2.20

SILT 1400-1800 150- 450 1.80-2.20 1.95

SAND 1000-2000 100- 500 1.60-2.:0 1.90

MORAINE 1500-2700 500-1300 1.50-2.00 1.80

SHALE 2700-4800 1500-2400 2.00-3.20 2.4D

SANDSTONE 2100-4500 1200-2800 2.10-2.80 2.35

CHALK 2100-4200 1000-2600 1.60-2.60 2.00

GYPSUM 2000-3500 1000-2000 2.20-2.60 2.35

ANHYDRITE 3500-5500 2000-3200 2.80-3.00 2.90

SALT 4200-5500 2000-3200 2.10-2.40 2.15

LIMESTONE 3400-7000 1800-3400 2.10-2.90 2.55

DOLOMITE 3500-6900 2000-3800 2.40-2.90 2.75

GNEISS 3500-7500 1700-3600 2.40-3.00 2.75

MARBLE 3750-6950 2000-3800 2.60-2.90 2.75

GRANITE 4750-6000 2400-3800 2.50-2.90 2.65

BASALT 5500-6400 2700-3400 2.70-3.30 3.00

GABBRO 6450-6700 3400-3700 2.70-3.30 3.00

ULTRABASIC 7400-8600 3700-4400 3.00-3.40 3.20

ROCKS
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